Genome-wide analysis of acute low salinity tolerance in the eastern oysterCrassostrea virginicaand potential of genomic selection for trait improvement
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Genome-wide analysis of acute low salinity tolerance in the eastern oysterCrassostrea virginicaand potential of genomic selection for trait improvement

Filetype[PDF-658.88 KB]



Details:

  • Journal Title:
    G3 Genes|Genomes|Genetics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As the global demand for seafood increases, research into the genetic basis of traits that can increase aquaculture production is critical. The eastern oyster (Crassostrea virginica) is an important aquaculture species along the Atlantic and Gulf Coasts of the United States, but increases in heavy rainfall events expose oysters to acute low salinity conditions, which negatively impact production. Low salinity survival is known to be a moderately heritable trait, but the genetic architecture underlying this trait is still poorly understood. In this study, we used ddRAD sequencing to generate genome-wide single-nucleotide polymorphism (SNP) data for four F2 families to investigate the genomic regions associated with survival in extreme low salinity (<3). SNP data were also used to assess the feasibility of genomic selection (GS) for improving this trait. Quantitative trait locus (QTL) mapping and combined linkage disequilibrium analysis revealed significant QTL on eastern oyster chromosomes 1 and 7 underlying both survival and day to death in a 36-day experimental challenge. Significant QTL were located in genes related to DNA/RNA function and repair, ion binding and membrane transport, and general response to stress. GS was investigated using Bayesian linear regression models and prediction accuracies ranged from 0.48 to 0.57. Genomic prediction accuracies were largest using the BayesB prior and prediction accuracies did not substantially decrease when SNPs located within the QTL region on Chr1 were removed, suggesting that this trait is controlled by many genes of small effect. Our results suggest that GS will likely be a viable option for improvement of survival in extreme low salinity.
  • Keywords:
  • Source:
    G3 Genes|Genomes|Genetics, 12(1)
  • DOI:
  • ISSN:
    2160-1836
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27