Quantifying the Effect of River Ice Surface Roughness on Sentinel-1 SAR Backscatter
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Quantifying the Effect of River Ice Surface Roughness on Sentinel-1 SAR Backscatter

Filetype[PDF-16.35 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Satellite-based C-band synthetic aperture radar (SAR) imagery is an effective tool to map and monitor river ice on regional scales because the SAR backscatter is affected by various physical properties of the ice, including roughness, thickness, and structure. Validation of SAR-based river ice classification maps is typically performed using expert interpretation of aerial or ground reference images of the river ice surface, using visually apparent changes in surface roughness to delineate different ice classes. Although many studies achieve high classification accuracies using this qualitative technique, it is not possible to determine if the river ice information contained within the SAR backscatter data originates from the changes in surface roughness used to create the validation data, or from some other ice property that may be more relevant for ice jam forecasting. In this study, we present the first systematic, quantitative investigation of the effect of river ice surface roughness on C-band Sentinel-1 backscatter. We use uncrewed aerial vehicle-based Structure from Motion photogrammetry to generate high-resolution (0.03 m) digital elevation models of river ice surfaces, from which we derive measurements of surface roughness. We employ Random Forest models first to repeat previous ice classification studies, and then as regression models to explore quantitative relationships between ice surface roughness and Sentinel-1 backscatter. Classification accuracies are similar to those reported in previous studies (77–96%) but poor regression performance for many surface roughness metrics (5–113% mean absolute percentage errors) indicates a weak relationship between river ice surface roughness and Sentinel-1 backscatter. Additional work is necessary to determine which physical ice properties are strong controls on C-band SAR backscatter.
  • Keywords:
  • Source:
    Remote Sensing, 14(22), 5644
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1