Genome-wide allele frequency studies in Pacific oyster families identify candidate genes for tolerance to ostreid herpesvirus 1 (OsHV-1)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Genome-wide allele frequency studies in Pacific oyster families identify candidate genes for tolerance to ostreid herpesvirus 1 (OsHV-1)

Filetype[PDF-3.54 MB]


  • Journal Title:
    BMC Genomics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Background Host genetics influences the development of infectious diseases in many agricultural animal species. Identifying genes associated with disease development has the potential to make selective breeding for disease tolerance more likely to succeed through the selection of different genes in diverse signaling pathways. In this study, four families of Pacific oysters (Crassostrea gigas) were identified to be segregating for a quantitative trait locus (QTL) on chromosome 8. This QTL was previously found to be associated with basal antiviral gene expression and survival to ostreid herpesvirus 1 (OsHV-1) mortality events in Tomales Bay, California. Individuals from these four families were phenotyped and genotyped in an attempt to find candidate genes associated with the QTL on chromosome 8. Results Genome-wide allele frequencies of oysters from each family prior to being planting in Tomales Bay were compared with the allele frequencies of oysters from respective families that survived an OsHV-1 mortality event. Six significant unique QTL were identified in two families in these genome-wide allele frequency studies, all of which were located on chromosome 8. Three QTL were assigned to candidate genes (ABCA1, PIK3R1, and WBP2) that have been previously associated with antiviral innate immunity in vertebrates. Conclusion The identification of vertebrate antiviral innate immunity genes as candidate genes involved in molluscan antiviral innate immunity reinforces the similarities between the innate immune systems of these two groups. Causal variant identification in these candidate genes will enable future functional studies of these genes in an effort to better understand their antiviral modes of action.
  • Keywords:
  • Source:
    BMC Genomics, 24(1)
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1