Flexitraits, Natural Chemical Tracers of Plant Competition and Productivity in Pacific Mangroves
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Flexitraits, Natural Chemical Tracers of Plant Competition and Productivity in Pacific Mangroves

Filetype[PDF-3.04 MB]


  • Journal Title:
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Metabolomic and genomic markers in plants have helped diagnose evolutionary pressures and resulting modern-day floristic diversification. Here we use a different set of metrics, 17 biochemical measures made at the whole tissue or bulk tissue level, to study diversification in resource use and productivity among Pacific mangroves. Three mangrove species Bruguiera gynmorhiza (BRGY), Rhizphora apiculata (RHAP), and Sonneratia alba (SOAL) were studied across 5 sites on the island of Kosrae, Federated States of Micronesia with measurements of the following chemical metrics: C, N, P, K, Na, Mg, Ca, B, S, Mn, Fe, Cu, Zn elements and isotope values δ2H, δ13C, δ15N, and δ34S. Species were remarkably distinct in chemical profiles, showing significant differences across all metrics. This indicated long-term resource use partitioning and optimization, with metrics showing physiology and patch-related differences. The patch-related differences meant that metrics were not really fixed in species, but represented flexible traits (“flexitraits”) in fingerprinting mangrove ecology. Effects of tree harvesting could be fingerprinted with the metrics at one of the Kosrae sites. Modeling showed two results. (1) Conservation efforts to preserve low-nutrient specialists like BRGY probably should involve removal of competing SOAL and RHAP rather than nutrient reductions. (2) Although mangrove growth rates were most limited by P, water was a strongly co-limiting factor. This study introduces a new physiological parameter to plant ecology, a water-to-phosphorus ratio, “normalized δ13C/P” or “f13C/P”, that should generally help diagnose how plant N and P nutrient use can be co-limited by water.
  • Keywords:
  • Source:
    Wetlands, 43(4)
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1