i
The Influence of Southeastern South American Rainfall on Weather Patterns Over the Tropical Atlantic, Northwestern Africa and Western Europe
-
2023
-
-
Source: Journal of Geophysical Research: Atmospheres, 128(20)
Details:
-
Journal Title:Journal of Geophysical Research: Atmospheres
-
Personal Author:
-
NOAA Program & Office:
-
Description:During boreal winter (December–February), the South American monsoon system (SAMS) reaches its annual maximum when upper‐tropospheric westerly winds prevail over the equatorial Atlantic. Atmospheric dynamic model simulations suggest that Rossby waves generated over South America can propagate to and potentially influence weather patterns in the Northern Hemisphere (NH). However, observational evidence has been absent previously. Here we focus on southeastern South American (SESA) precipitation anomalies, which can characterize intraseasonal rainfall variability of the SAMS. Since tropical “westerly duct” and convective heating are important factors for cross‐equatorial propagation of Rossby wave (CEPRW), we identify two groups of events based on the two factors. By comparing the events associated with both SESA rainfall and tropical westerlies to the events associated with tropical westerlies only, we find that an anomalous Rossby wave train is triggered by precipitation anomalies over SESA, propagates in the southwest–northeast direction, and subsequently crosses the equator. Over a period of 4 days, near‐surface temperature over northwestern Africa and western Europe becomes warmer, accompanied by increased surface downward longwave radiation and precipitable water. The equatorward propagating Eliassen–Palm flux anomalies originated from SESA support the evidence of CEPRW. Simulations using a time‐dependent linear barotropic model forced by prescribed divergence anomalies over SESA further confirm that SESA rainfall can influence the NH weather patterns through CEPRW. Knowledge of this study will help us better understand and model interhemispheric teleconnections over the American–Atlantic–African/European sector.
-
Keywords:
-
Source:Journal of Geophysical Research: Atmospheres, 128(20)
-
DOI:
-
ISSN:2169-897X;2169-8996;
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: