U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress

Supporting Files


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Geoscientific Model Development
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The US Northern Great Plains and the Canadian Prairies are known as the world's breadbaskets for their large spring wheat production and exports to the world. It is essential to accurately represent spring wheat growing dynamics and final yield and improve our ability to predict food production under climate change. This study attempts to incorporate spring wheat growth dynamics into the Noah-MP crop model for a long time period (13 years) and fine spatial scale (4 km). The study focuses on three aspects: (1) developing and calibrating the spring wheat model at a point scale, (2) applying a dynamic planting and harvest date to facilitate large-scale simulations, and (3) applying a temperature stress function to assess crop responses to heat stress amid extreme heat. Model results are evaluated using field observations, satellite leaf area index (LAI), and census data from Statistics Canada and the United States Department of Agriculture (USDA). Results suggest that incorporating a dynamic planting and harvest threshold can better constrain the growing season, especially the peak timing and magnitude of wheat LAI, as well as obtain realistic yield compared to prescribing a static province/state-level map. Results also demonstrate an evident control of heat stress upon wheat yield in three Canadian Prairies Provinces, which are reasonably captured in the new temperature stress function. This study has important implications in terms of estimating crop yields, modeling the land–atmosphere interactions in agricultural areas, and predicting crop growth responses to increasing temperatures amidst climate change.
  • Keywords:
  • Source:
    Geoscientific Model Development, 16(13), 3809-3825
  • DOI:
  • ISSN:
    1991-9603
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:a2ba12533d30a9ae8b86dcbad37fc8231401be458f5164e7bbe75a69325b8e70
  • Download URL:
  • File Type:
    Filetype[PDF - 11.66 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.