Characterizing the tropospheric water vapor spatial variation and trend using 2007–2018 COSMIC radio occultation and ECMWF reanalysis data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Characterizing the tropospheric water vapor spatial variation and trend using 2007–2018 COSMIC radio occultation and ECMWF reanalysis data

Filetype[PDF-10.58 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Description:
    Atmospheric water vapor plays a crucial role in the global energy balance, hydrological cycle, and climate system. High-quality and consistent water vapor data from different sources are vital for weather prediction and climate research. This study assesses the consistency between the Formosa Satellite Mission 3–Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) radio occultation (RO) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Model 5 (ERA5) water vapor datasets. Comparisons are made across different atmospheric pressure levels (300, 500, and 850 hPa) from 2007 to 2018. Generally, the two datasets show good spatial and temporal agreement. COSMIC's global water vapor retrieval is slightly lower than ERA5's at 500 and 850 hPa, with distinct latitudinal differences between hemispheres. COSMIC exhibits global water vapor increasing trends of 3.47 ± 1.77 % per decade, 3.25 ± 1.25 % per decade, and 2.03 ± 0.65 % per decade at 300, 500, and 850 hPa, respectively. Significant regional variability in water vapor trends, encompassing notable increasing and decreasing patterns, is observable in tropical and subtropical regions. At 500 and 850 hPa, strong water vapor increasing trends are noted in the equatorial Pacific Ocean and the Laccadive Sea, while decreasing trends are evident in the Indo-Pacific Ocean region and the Arabian Sea. Over land, substantial increasing trends at 850 hPa are observed in the southern United States, contrasting with decreasing trends in southern Africa and Australia. The differences between the water vapor trends of COSMIC and ERA5 are primarily negative in the tropical regions at 850 hPa. However, the water vapor increasing trends at 850 hPa estimated from COSMIC are significantly higher than the ones derived from ERA5 data for two low-height stratocumulus-cloud-rich ocean regions west of Africa and South America. These regions with notable water vapor trend differences are located in the Intertropical Convergence Zone (ITCZ) area with frequent occurrences of convection, such as deep clouds. The difference in characterizing water vapor distribution between RO and ERA5 in deep cloud regions may cause such trend differences. The assessment of spatiotemporal variability in RO-derived water vapor and reanalysis of atmospheric water vapor data helps ensure the quality of these datasets for climate studies.
  • Source:
    Atmospheric Chemistry and Physics, 23(22), 14187-14218
  • ISSN:
    1680-7324
  • Format:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26