Stress gradients structure spatial variability in coastal tidal marsh plant composition and diversity in a major Pacific coast estuary
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Stress gradients structure spatial variability in coastal tidal marsh plant composition and diversity in a major Pacific coast estuary

Filetype[PDF-13.76 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Frontiers in Ecology and Evolution
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding the drivers of variability in plant diversity from local to landscape spatial scales is a challenge in ecological systems. Environmental gradients exist at several spatial scales and can be nested hierarchically, influencing patterns of plant diversity in complex ways. As plant community dynamics influence ecosystem function, understanding the drivers of plant community variability across space is paramount for predicting potential shifts in ecosystem function from global change. Determining the scales at which stress gradients influence vegetation composition is crucial to inform management and restoration of tidal marshes for specific functions. Here, we analyzed vegetation community composition in 51 tidal marshes from the San Francisco Bay Estuary, California, USA. We used model-based compositional analysis and rank abundance curves to quantify environmental (elevation/tidal frame position, distance to channel, and channel salinity) and species trait (species form, wetland indicator status, and native status) influences on plant community variability at the marsh site and estuary scales. While environmental impacts on plant diversity varied by species and their relationships to each other, overall impacts increased in strength from marsh to estuary scales. Relative species abundance was important in structuring these tidal marsh communities even with the limited species pools dominated by a few species. Rank abundance curves revealed different community structures by region with higher species evenness at plots higher in the tidal frame and adjacent to freshwater channels. By identifying interactions (species–species, species–environment, and environment–trait) at multiple scales (local, landscape), we begin to understand how variability measurements could be interpreted for conservation and land management decisions.
  • Keywords:
  • Source:
    Frontiers in Ecology and Evolution, 11
  • DOI:
  • ISSN:
    2296-701X
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1