U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms

Supporting Files


Details

  • Journal Title:
    Atmospheric Measurement Techniques
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique has proven to be an effective tool for Earth atmosphere profiling. Traditional spaceborne RO satellite constellations are expensive with relatively low sampling density for specific regions of interest. In contrast, in-atmosphere RO platforms can provide much higher spatial and temporal sampling of ROs around regional weather events. This study explores the capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons. The refractivity retrievals from balloon-borne RO payloads obtained from two flight campaigns (World View and ZPM-1) are presented. The balloon-borne RO soundings from the World View campaign show refractivity profiles between 6 and 19 km, with overall near-zero median difference from colocated ECMWF ERA5 reanalysis data and variability comparable to spaceborne RO missions (∼ 2.3 % median absolute deviation or MAD). Soundings from the ZPM-1 campaign show a relatively large positive refractivity bias (∼ 2.5 %). In summary, low-cost COTS RO payloads on board balloon platforms are worth further engineering and study in order to provide capabilities for dense, targeted atmospheric soundings that can improve regional weather forecasts via data assimilation.
  • Keywords:
  • Source:
    Atmospheric Measurement Techniques, 16(4), 941-954
  • DOI:
  • ISSN:
    1867-8548
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:6d07af003d1d35187a6694294c85d445e8e69b701c365ef053628ff6ee954c80
  • Download URL:
  • File Type:
    Filetype[PDF - 3.33 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.