Parallels between stream and coastal water quality associated with groundwater discharge
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Parallels between stream and coastal water quality associated with groundwater discharge

Filetype[PDF-3.62 MB]



Details:

  • Journal Title:
    PLOS ONE
  • Description:
    Groundwater-surface water interactions drive water quality in both streams and the coastal ocean, where groundwater discharge occurs in streams as baseflow and along the coastline as submarine groundwater discharge (SGD). Groundwater contributions to streams and to the coastal ocean were quantified in three urban streams in Kāneʻohe Watershed, Hawaiʻi. We used radon as a groundwater tracer to show that baseflow contributions to streams ranged from 22 to 68% along their reaches leading to the coast of Kāneʻohe Bay. Total SGD was 4,500, 18,000, and 23,000 m3/day for the northwest, central, and southern sectors of the bay, respectively. Total groundwater (stream baseflow + SGD) dissolved nutrient fluxes were significantly greater than those sourced from stream surface runoff. The studied streams exhibited increasing nutrient levels downstream from groundwater inputs with high nutrient concentrations, negatively impacting coastal water quality. SGD dynamics were also assessed during the anomalously high perigean spring tides in 2017, where SGD was four times greater during the perigean spring tide compared to a spring tide and resulted in strong shifts in N:P ratios, suggesting that rising sea level stands may disrupt primary productivity with greater frequency. This study demonstrates the importance of considering baseflow inputs to streams to coastal groundwater budgets and suggests that coastal water quality may be improved through management and reduction of groundwater contaminants.
  • Source:
    PLOS ONE, 14(10), e0224513
  • ISSN:
    1932-6203
  • Format:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26