Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Supporting Files
-
2023
-
Details
-
Journal Title:Atmospheric Chemistry and Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:We characterize the aerosol physical and optical properties of 13 transported biomass burning (BB) events. BB events included long-range influence from fires in Alaskan and Siberian boreal forests transported to Mt. Bachelor Observatory (MBO) in the free troposphere (FT) over 8–14+ d and regional wildfires in northern California and southwestern Oregon transported to MBO in the boundary layer (BL) over 10 h to 3 d. Intensive aerosol optical properties and normalized enhancement ratios for BB events were derived from measured aerosol light scattering coefficients (σscat), aerosol light-absorbing coefficients (σabs), fine particulate matter (PM1), and carbon monoxide (CO) measurements made from July to September 2019, with particle size distribution collected from August to September. The observations showed that the Siberian BB events had a lower scattering Ångström exponent (SAE), a higher mass scattering efficiency (MSE; Δσscat/ΔPM1), and a bimodal aerosol size distribution with a higher geometric mean diameter (Dg). We hypothesize that the larger particles and associated scattering properties were due to the transport of fine dust alongside smoke in addition to contributions from condensation of secondary aerosol, coagulation of smaller particles, and aqueous-phase processing during transport. Alaskan and Siberian boreal forest BB plumes were transported long distances in the FT and characterized by lower absorption Ångström exponent (AAE) values indicative of black carbon (BC) dominance in the radiative budget. Significantly elevated AAE values were only observed for BB events with <1 d transport, which suggests strong production of brown carbon (BrC) in these plumes but limited radiative forcing impacts outside of the immediate region.
-
Keywords:
-
Source:Atmospheric Chemistry and Physics, 23(4), 2747-2764
-
DOI:
-
ISSN:1680-7324
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:urn:sha256:c714c8e8a22be2eae74f22f75849438b14a9e388d5d8b5ca34da568f7a75ecd3
-
Download URL:
-
File Type:
Supporting Files
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
NOAA General Documents