Using Simple, Explainable Neural Networks to Predict the Madden‐Julian Oscillation
Supporting Files
-
2022
Details
-
Journal Title:Journal of Advances in Modeling Earth Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:Few studies have utilized machine learning techniques to predict or understand the Madden‐Julian oscillation (MJO), a key source of subseasonal variability and predictability. Here, we present a simple framework for real‐time MJO prediction using shallow artificial neural networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic, that predict a real‐time MJO index using maps of tropical variables. These ANNs make skillful MJO predictions out to ∼18 days in October‐March and ∼11 days in April‐September, outperforming conventional linear models and efficiently capturing aspects of MJO predictability found in more complex, dynamical models. The flexibility and explainability of simple ANN frameworks are highlighted through varying model input and applying ANN explainability techniques that reveal sources and regions important for ANN prediction skill. The accessibility, performance, and efficiency of this simple machine learning framework is more broadly applicable to predict and understand other Earth system phenomena.
-
Keywords:
-
Source:Journal of Advances in Modeling Earth Systems, 14(5)
-
DOI:
-
ISSN:1942-2466 ; 1942-2466
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:urn:sha256:d44ecfc1ad03c0712ab2828902b22631ebe4935100ac0d0994b20ae40be2a398
-
Download URL:
-
File Type:
Supporting Files
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like