The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Bayesian Inference and Global Sensitivity Analysis for Ambient Solar Wind Prediction
-
2023
-
-
Source: Space Weather, 21(9)
Details:
-
Journal Title:Space Weather
-
Personal Author:
-
NOAA Program & Office:
-
Description:The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang‐Sheeley‐Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has 11 uncertain parameters that are mainly non‐physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance‐based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.
-
Keywords:
-
Source:Space Weather, 21(9)
-
DOI:
-
ISSN:1542-7390;1542-7390;
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: