i
Determining the primary sources of uncertainty in the retrieval of marine remote sensing reflectance from satellite ocean color sensors II. Sentinel 3 OLCI sensors
-
2023
-
-
Source: Frontiers in Remote Sensing, 4
Details:
-
Journal Title:Frontiers in Remote Sensing
-
Personal Author:
-
NOAA Program & Office:
-
Description:Uncertainties in remote sensing reflectance Rrs for the Ocean Color sensors strongly affect the quality of the retrieval of concentrations of chlorophyll-a and water properties. By comparison of data from SNPP VIIRS and several AERONET-OC stations and MOBY, it was recently shown that the main uncertainties come from the Rayleigh-type spectral component (Gilerson et al., 2022), which was associated with small variability in the Rayleigh optical thickness in the atmosphere and/or its calculation. In addition, water variability spectra proportional to Rrs were found to play a significant role in coastal waters, while other components including radiances from aerosols and glint were small. This work expands on the previous study, following a similar procedure and applying the same model for the characterization of uncertainties to the Sentinel-3A and B OLCI sensors. It is shown that the primary sources of uncertainties are the same as for VIIRS, i.e., dominated by the Rayleigh-type component, with the total uncertainties for OLCI sensors typically higher in coastal areas than for VIIRS.
-
Keywords:
-
Source:Frontiers in Remote Sensing, 4
-
DOI:
-
ISSN:2673-6187
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: