U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model

Supporting Files


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We explore the sensitivity of modeled tropospheric hydroxyl (OH) concentration trends to meteorology and near-term climate forcers (NTCFs), namely methane (CH4) nitrogen oxides (NOx=NO2+NO) carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs) and ozone-depleting substances (ODSs), using the Geophysical Fluid Dynamics Laboratory (GFDL)'s atmospheric chemistry–climate model, the Atmospheric Model version 4.1 (AM4.1), driven by emissions inventories developed for the Sixth Coupled Model Intercomparison Project (CMIP6) and forced by observed sea surface temperatures and sea ice prepared in support of the CMIP6 Atmospheric Model Intercomparison Project (AMIP) simulations. We find that the modeled tropospheric air-mass-weighted mean [OH] has increased by ∼5 % globally from 1980 to 2014. We find that NOx emissions and CH4 concentrations dominate the modeled global trend, while CO emissions and meteorology were also important in driving regional trends. Modeled tropospheric NO2 column trends are largely consistent with those retrieved from the Ozone Monitoring Instrument (OMI) satellite, but simulated CO column trends generally overestimate those retrieved from the Measurements of Pollution in The Troposphere (MOPITT) satellite, possibly reflecting biases in input anthropogenic emission inventories, especially over China and South Asia.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 23(8), 4955-4975
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:4b246ea31e5d9ccc9b6bea19fc795a95be0e932f1cd04b89956d980b3d788c08
  • Download URL:
  • File Type:
    Filetype[PDF - 13.47 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.