A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance datasets
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance datasets

Filetype[PDF-2.18 MB]



Details:

  • Journal Title:
    ISPRS Journal of Photogrammetry and Remote Sensing
  • NOAA Program & Office:
  • Description:
    With the launch of the Joint Polar Satellite System (JPSS)/Soumi National Polar-orbiting Partnership (S-NPP) satellite in October 2011, the need for the operational monitoring of terrestrial processes at the regional and global scales led to the expansion of terrestrial remote sensing products (e.g., the clear-sky composited surface reflectance products) generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) into the JPSS/S-NPP mission using the new Visible Infrared Imaging Radiometer Suite (VIIRS) data. Seamless cloud composites are usually generated using a single criterion without an explicit consideration of phenological variations among different surface types. However, because the spectral signals of many surface types change dramatically due to seasonal variations, the single-criterion compositing methods are only effective for specific surface cover conditions. This study proposed a new self-adaptive compositing approach (SA-Comp) to produce global terrestrial clear-sky VIIRS surface reflectance composites. The proposed approach employs contextual spectral and temporal information to determine the surface cover conditions within a pre-defined temporal window, and adaptively selects the most suitable criterion. A comprehensive evaluation of the SA-Comp approach was conducted by comparing it with the maximum NDVI (MaxNDVI), minimum Red (MinRed) and maximum ratio (MaxRatio) compositing schemes, and with the MODIS and VIIRS composited surface reflectance products. The results, including visual representations and temporal profiles, revealed that the SA-Comp approach outperformed all of the other methods. The results also highlighted that the SA-Comp approach is more feasible and effective at compositing global VIIRS data and has great potential for regional, national and even global terrestrial monitoring.
  • Source:
    ISPRS Journal of Photogrammetry and Remote Sensing, 144, 189-201
  • ISSN:
    0924-2716
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26