Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data

Filetype[PDF-2.65 MB]



Details:

  • Journal Title:
    Remote Sensing of Environment
  • Description:
    Widespread and persistent Ecosystem Disruptive Algal Blooms dominated by marine picocyanobacteria (Synechococcus) commonly occur in the subtropical lagoonal estuary of Florida Bay (U.S.A). These blooms have been linked to a decline in natural sheet flow over the past century from upstream Everglades National Park. Remote sensing algorithms for monitoring cyanobacteria blooms are highly desired but have been mainly developed for freshwater and coastal systems with minimal bottom reflectance contributions in the past. Examination of in situ optical properties revealed that Synechococcus blooms in Florida Bay exhibit unique spectral absorption and reflectance features that form the basis for algorithm development. Using a large, multi-year match-up dataset (2002–2012; n = 682) consisting of in situ pigment concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) Rayleigh-corrected reflectance (Rrc(λ)), classification criteria for detecting cyanobacteria blooms with chlorophyll-a concentrations (Chl-a) ~5–40 mg m−3 were determined based on a new approach to combine the MODIS Cyanobacteria Index, CIMODIS, and spectral shape around 488 nm, SS(488). The inclusion of SS(488) was required to prevent false positive classifications in seagrass-rich, non-bloom waters with high bottom reflectance contributions. 75% of cyanobacteria blooms were classified accurately based on this modified CI approach with <1% false positives. A strong correlation observed between cyanobacteria bloom in situ Chl-a and CIMODIS (r2 = 0.80, n = 32) then allowed cyanobacterial chlorophyll-a concentrations (ChlCI) to be estimated. Model simulations and image-based analyses showed that this technique was insensitive to variable aerosol properties and sensor viewing geometry. Application of the approach to the entire MODIS time-series (2000–present) may help identify factors controlling blooms and system responses to ongoing management efforts aimed at restoring flow to pre-drainage conditions. The method may also provide insights for algorithm development for other lagoonal estuaries that experience similar blooms.
  • Source:
    Remote Sensing of Environment, 231, 111227
  • ISSN:
    0034-4257
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26