Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data

Filetype[PDF-2.65 MB]


  • Journal Title:
    Remote Sensing of Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Widespread and persistent Ecosystem Disruptive Algal Blooms dominated by marine picocyanobacteria (Synechococcus) commonly occur in the subtropical lagoonal estuary of Florida Bay (U.S.A). These blooms have been linked to a decline in natural sheet flow over the past century from upstream Everglades National Park. Remote sensing algorithms for monitoring cyanobacteria blooms are highly desired but have been mainly developed for freshwater and coastal systems with minimal bottom reflectance contributions in the past. Examination of in situ optical properties revealed that Synechococcus blooms in Florida Bay exhibit unique spectral absorption and reflectance features that form the basis for algorithm development. Using a large, multi-year match-up dataset (2002–2012; n = 682) consisting of in situ pigment concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) Rayleigh-corrected reflectance (Rrc(λ)), classification criteria for detecting cyanobacteria blooms with chlorophyll-a concentrations (Chl-a) ~5–40 mg m−3 were determined based on a new approach to combine the MODIS Cyanobacteria Index, CIMODIS, and spectral shape around 488 nm, SS(488). The inclusion of SS(488) was required to prevent false positive classifications in seagrass-rich, non-bloom waters with high bottom reflectance contributions. 75% of cyanobacteria blooms were classified accurately based on this modified CI approach with <1% false positives. A strong correlation observed between cyanobacteria bloom in situ Chl-a and CIMODIS (r2 = 0.80, n = 32) then allowed cyanobacterial chlorophyll-a concentrations (ChlCI) to be estimated. Model simulations and image-based analyses showed that this technique was insensitive to variable aerosol properties and sensor viewing geometry. Application of the approach to the entire MODIS time-series (2000–present) may help identify factors controlling blooms and system responses to ongoing management efforts aimed at restoring flow to pre-drainage conditions. The method may also provide insights for algorithm development for other lagoonal estuaries that experience similar blooms.
  • Keywords:
  • Source:
    Remote Sensing of Environment, 231, 111227
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1