Effects of eutrophication and benthic respiration on water column carbonate chemistry in a traditional hypoxic zone in the Northern Gulf of Mexico
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Effects of eutrophication and benthic respiration on water column carbonate chemistry in a traditional hypoxic zone in the Northern Gulf of Mexico

Filetype[PDF-1.63 MB]



Details:

  • Journal Title:
    Marine Chemistry
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A simple river-ocean mixing approach has been frequently used to examine estuarine and coastal carbonate system speciation. Coastal areas receiving significant nutrient inputs, however, can have the carbonate chemistry greatly deviated from this mixing-only scheme because of disparate, but spatially coupled biogeochemical processes, i.e., intense primary production in surface waters and elevated respiration in bottom waters; the latter often leads to bottom-water hypoxia (dissolved oxygen or DO concentration < 2 mg L− 1) and acidification. As a result of land use change, riverine TA input is known to enhance coastal water buffer capacity, although this effect in eutrophic coastal water has not been systematically studied. The physical disturbances of shallow coastal waters by storms can disrupt bottom hypoxia through overturning the water column. This overturn has been proposed to exacerbate bottom water acidification, because of the different exchange rates of oxygen and CO2, which could lead to a ‘reset’ of oxygen concentration but little change in the total dissolved inorganic carbon concentration. We used data from the summer 2010 hypoxia cruise in the northern Gulf of Mexico shelf, during which a tropical depression (Bonnie) perturbed the bottom water. Carbonate buffer capacity in both surface and subsurface waters along the salinity gradient suggested that eutrophication-induced surface production and bottom respiration far outweighed the influence of river TA variation and temperature changes in determining carbonate changes on centennial time scales. We propose, based on literature-based CO2 flux reported in this area, that the benthic (both aerobic and anaerobic) respiration-produced CO2 flux (with a lesser flux of alkalinity), instead of bottom water reset by storms, could be responsible for further acidifying hypoxic bottom water in addition to water column aerobic respiration.
  • Keywords:
  • Source:
    Marine Chemistry, 194, 33-42
  • DOI:
  • ISSN:
    0304-4203
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1