A linear mixed model formulation for spatio-temporal random processes with computational advances for the product, sum, and product–sum covariance functions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A linear mixed model formulation for spatio-temporal random processes with computational advances for the product, sum, and product–sum covariance functions

Filetype[PDF-15.98 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Spatial Statistics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    To properly characterize a spatio-temporal random process, it is necessary to understand the process’ dependence structure. It is common to describe this dependence using a single random error having a complicated covariance. Instead of using the single random error approach, we describe spatio-temporal random processes using linear mixed models having several random errors; each random error describes a specific quality of the covariance. This linear mixed model formulation is general, intuitive, and contains many commonly used covariance functions as special cases. We focus on using the linear mixed model formulation to express three covariance functions: product (separable), sum (linear), and product–sum. We discuss benefits and drawbacks of each covariance function and propose novel algorithms using Stegle eigendecompositions, a recursive application of the Sherman–Morrison–Woodbury formula, and Helmert–Wolf blocking to efficiently invert their covariance matrices, even when every spatial location is not observed at every time point. Via a simulation study and an analysis of temperature data in Oregon, USA, we assess model performance and computational efficiency of these covariance functions when estimated using restricted maximum likelihood (likelihood-based) and Cressie’s weighted least squares (semivariogram-based). We end by offering guidelines for choosing among combinations of the covariance functions and estimation methods based on properties of observed data and the desired balance between model performance and computational efficiency.
  • Keywords:
  • Source:
    Spatial Statistics, 43, 100510
  • DOI:
  • ISSN:
    2211-6753
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1