A linear mixed model formulation for spatio-temporal random processes with computational advances for the product, sum, and product–sum covariance functions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A linear mixed model formulation for spatio-temporal random processes with computational advances for the product, sum, and product–sum covariance functions

Filetype[PDF-15.98 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Spatial Statistics
  • NOAA Program & Office:
  • Description:
    To properly characterize a spatio-temporal random process, it is necessary to understand the process’ dependence structure. It is common to describe this dependence using a single random error having a complicated covariance. Instead of using the single random error approach, we describe spatio-temporal random processes using linear mixed models having several random errors; each random error describes a specific quality of the covariance. This linear mixed model formulation is general, intuitive, and contains many commonly used covariance functions as special cases. We focus on using the linear mixed model formulation to express three covariance functions: product (separable), sum (linear), and product–sum. We discuss benefits and drawbacks of each covariance function and propose novel algorithms using Stegle eigendecompositions, a recursive application of the Sherman–Morrison–Woodbury formula, and Helmert–Wolf blocking to efficiently invert their covariance matrices, even when every spatial location is not observed at every time point. Via a simulation study and an analysis of temperature data in Oregon, USA, we assess model performance and computational efficiency of these covariance functions when estimated using restricted maximum likelihood (likelihood-based) and Cressie’s weighted least squares (semivariogram-based). We end by offering guidelines for choosing among combinations of the covariance functions and estimation methods based on properties of observed data and the desired balance between model performance and computational efficiency.
  • Source:
    Spatial Statistics, 43, 100510
  • ISSN:
    2211-6753
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26