Genetic spatial structure of an anchialine cave annelid indicates connectivity within - but not between - islands of the Great Bahama Bank
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Genetic spatial structure of an anchialine cave annelid indicates connectivity within - but not between - islands of the Great Bahama Bank

Filetype[PDF-1.00 MB]



Details:

  • Journal Title:
    Molecular Phylogenetics and Evolution
  • NOAA Program & Office:
  • Description:
    Land-locked anchialine blue holes are karstic sinkholes and caves with tidally influenced, vertically stratified water bodies that harbor endemic fauna exhibiting variable troglomorphic features. These habitats represent island-like systems, which can serve to elucidate evolutionary and biogeographic processes at local scales. We investigated whether the ‘continuous spelean corridor’ hypothesis may elucidate the biogeographical distributions of the stygobitic annelid Pelagomacellicephala iliffei (Polynoidae) collected from the Great Bahama and Caicos Banks of the Bahamas Archipelago. Phylogenetic reconstructions were performed using Bayesian Inference on individual and combined datasets of three molecular markers (16S rDNA, COI, 18S rDNA) and species delimitation employed three widely accepted methods in DNA taxonomy, namely GMYC, bPTP, and ABGD. Mantel tests were used to test the effect of geography on genetic structure. Using these analyses, we recovered five independently evolving entities of the focal species across four islands of the Great Bahama Bank including Cat, Eleuthera, Exumas, and Long. Genetic data yielded strong correlations between islands and phylogenetic entities, signifying independent evolutionary histories within anchialine caves across the platform. The island of Eleuthera showed intra-island gene flow and dispersal capabilities between blue holes separated by 115 km, providing evidence of a crevicular spelean corridor within the island. However, no evidence of inter-island dispersal is present in the analyzed system. Consistent with previous biogeographic studies of cave crustaceans, the major barriers shaping the cave biota of the Bahamas Archipelago appears to be the deep trenches and channels separating the Bahamian banks.
  • Source:
    Molecular Phylogenetics and Evolution, 109, 259-270
  • ISSN:
    1055-7903
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26