Contemporary sources dominate carbonaceous aerosol on the North Slope of Alaska
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Contemporary sources dominate carbonaceous aerosol on the North Slope of Alaska

Filetype[PDF-18.76 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Science of The Total Environment
  • Description:
    As the Arctic continues to change and warm rapidly, it is increasingly important to understand the organic carbon (OC) contribution to Arctic aerosol. Biogenic sources of primary and secondary OC in the Arctic will be impacted by climate change, including warming temperatures and earlier snow and ice melt. This study focuses on identifying potential sources and regional influences on the seasonal concentration of organic aerosol through analysis of chemical and isotopic composition. Aerosol samples were collected at two sites on the North Slope of Alaska (Utqiaġvik, UQK, and Oliktok Point, OLK, which is in an Arctic oilfield) over three summers from 2015 to 2017. The elemental carbon (EC) trends at each site were used to understand local combustion influences. Local sources drove EC concentrations at Oliktok Point, where high EC was attributed to oil and gas extraction activity, including diesel combustion emissions. Utqiaġvik had very low EC in the summer. OC was more similar in concentration and well correlated between the two sites with high contributions of contemporary carbon by radiocarbon apportionment (UQK = 74%, OLK = 63%), which could include both marine and terrestrial sources of contemporary carbon (e.g. primary and secondary biogenic, biomass burning and/or associated SOA, and bioaerosols). OC concentrations are strongly correlated to maximum ambient temperatures on the NSA during the summer, which may have implications for predicting future OC aerosol concentrations in a warming Arctic. Biomass burning was determined to be an episodic influence at both sites, based on interpretation of combined aerosol composition, air mass trajectories, and remote sensing of smoke plumes. The results from this study overall strongly suggests contribution from regional sources of contemporary organic aerosol on the NSA, but additional analysis is needed to better constrain contributions from both biogenic sources (terrestrial and/or marine) and bioaerosol to better understand temperature-related aerosol processes in the Arctic.
  • Source:
    Science of The Total Environment, 831, 154641
  • ISSN:
    0048-9697
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26