Using multiple watershed models to assess the water quality impacts of alternate land development scenarios for a small community
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Using multiple watershed models to assess the water quality impacts of alternate land development scenarios for a small community

Filetype[PDF-1.20 MB]



Details:

  • Journal Title:
    CATENA
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Chesapeake Bay, the largest estuary in North America, is impaired by excess nutrient discharges, especially from urban and agricultural land. Watershed simulation models have provided key insights to understanding land-to-water connections, but rarely are these models applied to guide local land management to explore and communicate uncertainty in the model predictions. In this study, three watershed simulation models; the Soil and Water Assessment Tool (SWAT), the Generalized Watershed Loading Function (GWLF) model, and the Chesapeake Bay Program's Chesapeake Watershed Model (CBP-CWM) were implemented to predict water, total nitrogen, and total phosphorus discharges from small tributaries in the town of Queenstown, Maryland, USA. Based on our evaluation metrics, none of the models consistently provided better results. In general, there was a good agreement on annual average water flow between the SWAT and CBP-CWM models, and the GWLF and CBP-CWM models predicted similar TN and TP loads. Each model has strengths and weaknesses in flow and nutrient predictions, and predictions differed among models even when models were initialized with the same data. Using multiple models may enhance the quality of model predictions and the decision making process. However, it could also be the case that the complexity of implemented watershed models and resolution of our understanding currently are not yet suited to provide scientifically credible solutions.
  • Keywords:
  • Source:
    CATENA, 150, 87-99
  • DOI:
  • ISSN:
    0341-8162
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1