Comparative transcriptomics implicate mitochondrial and neurodevelopmental impairments in larval zebrafish (Danio rerio) exposed to two selective serotonin reuptake inhibitors (SSRIs)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Comparative transcriptomics implicate mitochondrial and neurodevelopmental impairments in larval zebrafish (Danio rerio) exposed to two selective serotonin reuptake inhibitors (SSRIs)

Filetype[PDF-791.17 KB]



Details:

  • Journal Title:
    Ecotoxicology and Environmental Safety
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in the environment worldwide. Certain classes of pharmaceuticals, such as selective serotonin reuptake inhibitors (SSRIs), are a major environmental concern due to their widespread use and the fact that these compounds are designed to have biological effects at low doses. A complication in predicting toxic effects of SSRIs in nontarget organisms is that their mechanism of action is not fully understood. To better understand the potential toxic effects of SSRIs, we employed an ultra-low input RNA-sequencing method to identify potential pathways that are affected by early exposure to two SSRIs (fluoxetine and paroxetine). We exposed wildtype zebrafish (Danio rerio) embryos to 100 μg/L of either fluoxetine or paroxetine for 6 days before extracting and sequencing mRNA from individual larval brains. Differential gene expression analysis identified 1550 genes that were significantly affected by SSRI exposure with a core set of 138 genes altered by both SSRIs. Weighted gene co-expression network analysis identified 7 modules of genes whose expression patterns were significantly correlated with SSRI exposure. Functional enrichment analysis of differentially expressed genes as well as network module genes repeatedly identified various terms associated with mitochondrial and neuronal structures, mitochondrial respiration, and neurodevelopmental processes. The enrichment of these terms indicates that toxic effects of SSRI exposure are likely caused by mitochondrial dysfunction and subsequent neurodevelopmental effects. To our knowledge, this is the first effort to study the tissue-specific transcriptomic effects of SSRIs in developing zebrafish, providing specific, high resolution molecular data regarding the sublethal effects of SSRI exposure.
  • Keywords:
  • Source:
    Ecotoxicology and Environmental Safety, 203, 110934
  • DOI:
  • ISSN:
    0147-6513
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1