Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana

Filetype[PDF-1.90 MB]



Details:

  • Journal Title:
    Harmful Algae
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Cyanobacterial harmful algal blooms (cyanoHABs) continue to increase in frequency and magnitude, threatening global freshwater ecosystems and services. In north-temperate lakes cyanobacteria appear in early summer, succeeding green algae as the dominant phytoplankton group, a pattern thought to be mediated by changes in temperature and bioavailable nutrients. To understand additional drivers of this successional pattern our study used reciprocal invasion experiments to examine the competitive interaction between Microcystis aeruginosa, a dominant contributor to cyanoHABs, and the green alga Chlorella sorokiniana. We considered two factors that may impact these interactions: (1) strain variation, with a specific emphasis on the presence or absence of the gene for the hepatotoxin microcystin, and (2) host-associated bacteria. We used toxic M. aeruginosa PCC 7806 (microcystin producing strain), a non-toxic mutant of PCC 7806, non-toxic M. aeruginosa PCC 9701 (non-microcystin producing strain), and C. sorokiniana. Each organism was available free of all bacteria (i.e., axenic) and with a re-introduced defined bacterial community to generate their xenic counterparts. Competitive interactions were assessed with reciprocal invasion experiments between paired xenic and paired axenic populations of C. sorokiniana and one of the two Microcystis strains, each assessed separately. Flow cytometry and random forest models were used to rapidly discriminate and quantify phytoplankton population densities with 99% accuracy. We found that M. aeruginosa PCC 7806, but not strain PCC 9701, could proliferate from low abundance in a steady-state population of C. sorokiniana. Further, the presence of bacteria allowed M. aeruginosa PCC 7806 to grow to a higher population density into an established C. sorokiniana population than when grown axenic. Conversely, when M. aeruginosa was dominant, C. sorokiniana was only able to proliferate from low density into the PCC 9701 strain, and only when axenic. The mutant of PCC 7806 lacking the ability to produce microcystin behaved similarly to the toxic wild-type, implying microcystin is not responsible for the difference in competitive abilities observed between the two wild-type strains. Quantification of microcystins (MCs) when PCC 7806 M. aeruginosa was introduced into the C. sorokiniana culture showed two-fold more MCs per cell when host-associated bacteria were absent compared to present in both species cultures. Our results show that the ability of M. aeruginosa to compete with C. sorokiniana is determined by genomic differences beyond genes involved in microcystin toxin generation and indicate an important role of host-associated bacteria in mediating phytoplankton interspecies interactions. These results expand our understanding of the key drivers of phytoplankton succession and the establishment and persistence of freshwater harmful cyanobacterial blooms.
  • Keywords:
  • Source:
    Harmful Algae, 99, 101939
  • DOI:
  • ISSN:
    1568-9883
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1