Proteinaceous corals as proxy archives of paleo-environmental change
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Proteinaceous corals as proxy archives of paleo-environmental change

Filetype[PDF-7.37 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Earth-Science Reviews
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    High-resolution marine data are critical to evaluating anthropogenic impacts on our environment. Considering the spatial and temporal limitations of direct instrumental measurements, proxy data extracted from marine environmental archives are necessary to separate anthropogenic changes from those that would occur naturally. The majority of late-Holocene, high resolution environmental reconstructions are derived from marine carbonates including tropical scleractinian corals, bivalves, crustose coralline algae, and sclerosponges. However, these archives are restricted to the top hundreds of meters of the water column, and only preserve environmental variability that is captured by calcium carbonate skeletons. At a very few select locations, marine sediments archive annual environmental variability in organic and inorganic materials. Recently, additional types of corals are proving to yield information complimentary to these traditional marine archives, including cold water scleractinian corals and proteinaceous corals. A taxonomically-diverse group, the proteinaceous corals are broadly defined as those having a branching gross-morphology with skeleton comprised at least partly of protein-rich organic material. They encode characteristics of their food and ambient environment into the chemical and physical composition of their skeleton. This environmental-encoding combined with their banded skeleton and significant longevity means that proteinaceous corals hold information in their skeleton that helps fill the spatial and temporal gaps in our knowledge of past and present ocean conditions.
  • Keywords:
  • Source:
    Earth-Science Reviews, 209, 103326
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1