Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 2—Joint physical and biological data assimilation twin experiments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 2—Joint physical and biological data assimilation twin experiments

Filetype[PDF-1.19 MB]



Details:

  • Journal Title:
    Ocean Modelling
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Coupled physical and biological data assimilation is performed within the California Current System using model twin experiments. The initial condition of physical and biological variables is estimated using the four-dimensional variational (4DVar) method under the Gaussian and lognormal error distributions assumption, respectively. Errors are assumed to be independent, yet variables are coupled by assimilation through model dynamics. Using a nutrient-phytoplankton-zooplankton-detritus (NPZD) model coupled to an ocean circulation model (the Regional Ocean Modeling System, ROMS), the coupled data assimilation procedure is evaluated by comparing results to experiments with no assimilation and with assimilation of physical data and biological data separately. Independent assimilation of physical (biological) data reduces the root-mean-squared error (RMSE) of physical (biological) state variables by more than 56% (43%). However, the improvement in biological (physical) state variables is less than 7% (13%). In contrast, coupled data assimilation improves both physical and biological components by 57% and 49%, respectively. Coupled data assimilation shows robust performance with varied observational errors, resulting in significantly smaller RMSEs compared to the free run. It still produces the estimation of observed variables better than that from the free run even with the physical and biological model error, but leads to higher RMSEs for unobserved variables. A series of twin experiments illustrates that coupled physical and biological 4DVar assimilation is computationally efficient and practical, capable of providing the reliable estimation of the coupled system with the same and ready to be examined in a realistic configuration.
  • Keywords:
  • Source:
    Ocean Modelling, 106, 146-158
  • DOI:
  • ISSN:
    1463-5003
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1