Impacts of the Madden‐Julian oscillation on intraseasonal precipitation over Northeast Brazil
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Impacts of the Madden‐Julian oscillation on intraseasonal precipitation over Northeast Brazil

Filetype[PDF-36.30 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    International Journal of Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The impacts of the Madden‐Julian oscillation (MJO) on precipitation over Northeast Brazil (NEB, also known as Nordeste) are evaluated based on daily raingauge data from 492 stations over 30‐year period (1981–2010). Composites of precipitation, outgoing longwave radiation and moisture‐flux anomalies are performed for each phase of the MJO, and over all four seasons, based on the Jones–Carvalho MJO index. To distinguish the MJO signal from other patterns of climate variability, daily data are filtered using a 20–90 day band‐pass filter; only days classified as MJO events are considered in the composites. The results show strong seasonality of the MJO's impact on precipitation. The most spatially coherent signals of precipitation anomalies occur in the austral summer, when about 80% of the raingauge stations showed increased precipitation in phases 1–2 and suppressed precipitation in phases 5–6 of the oscillation. Although the MJO impacts precipitation on intraseasonal timescales in all seasons in most locations, these impacts vary in magnitude and depend on the phase of the oscillation. Precipitation anomalies over NEB are explained by the interaction of convectively coupled Kelvin‐Rossby waves with the dominant climatic features in each season. During the austral summer and spring, westerly regimes increase precipitation over most NEB. In the austral winter and fall, precipitation anomalies exhibit more complex spatial variability. In these seasons, precipitation anomalies in coastal areas depend on the strength of the South Atlantic anticyclone, which is largely modulated by Rossby waves. The strengthening of the anticyclone intensifies the convergence of the trade winds in coastal areas and precipitation windward of the coastal range. Conversely, the intensification of the subsidence is responsible for precipitation deficits in the lee side of the range. These conditions are typically observed when easterly regimes dominate over tropical South America and NEB decreasing moisture flow from the Amazon.
  • Keywords:
  • Source:
    International Journal of Climatology, 37(4), 1859-1884
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1