Litter chemistry influences decomposition through activity of specific microbial functional guilds
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Litter chemistry influences decomposition through activity of specific microbial functional guilds

Filetype[PDF-465.82 KB]



Details:

  • Journal Title:
    Ecological Monographs
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Niche differentiation among species is a key mechanism by which biodiversity may be linked to ecosystem function. We tested a set of widely invoked hypotheses about the extent of niche differentiation in one of the most diverse communities on Earth, decomposer microorganisms, by measuring their response to changes in three abundant litter resources: lignin, cellulose, and nitrogen (N). To do this, we used the model system Arabidopsis thaliana to manipulate lignin, cellulose, and N availability and then used high‐throughput sequencing to measure the response of microbial communities during decay. Resequencing the decomposer communities after incubation of decomposed litter with pure substrates showed that groups of species had unique substrate use profiles, such that species organized into functional “guilds” of decomposers that were associated with individual litter chemicals. Low concentrations of lignin, cellulose, or N in the litter caused unique shifts in decomposer community composition after 1 yr of decay. Low cellulose plants had low levels of fungi in all decomposer guilds, low lignin plants had high levels of fungi in all decomposer guilds, and low N plants had low levels of fungi in decomposer guilds associated with sucrose and lignin. The relative abundance of decomposer guilds correlated with the total loss of individual litter chemicals during litter decay in the field. In addition, N fertilization shifted decomposer communities during both the early and later stages of decay to those dominated by decomposers in the cellulose guild. Our results contrast the assumption that major carbon (C) and N degradation mechanisms are uniform across whole decomposer communities and instead suggest that decomposition arises from complementarity among groups of metabolically distinct taxa.
  • Keywords:
  • Source:
    Ecological Monographs, 88(3), 429-444
  • DOI:
  • ISSN:
    0012-9615;1557-7015;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1