Southwest Pacific atmospheric weather regimes: linkages to ENSO and extra‐tropical teleconnections
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Southwest Pacific atmospheric weather regimes: linkages to ENSO and extra‐tropical teleconnections

Filetype[PDF-8.66 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    International Journal of Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We objectively identified an optimal number of atmospheric weather regimes, also called synoptic types, within the southwest (SW) Pacific tropical–subtropical domain and examined their potential drivers. Six atmospheric weather regimes in this region are characterized by spatially heterogeneous geopotential height, sea surface temperature, and regional precipitation patterns. The identified weather regimes are phase‐locked to the seasonal cycle with a moderate degree of coherency, and some are capable of persisting for weeks or more in extreme cases. Correlations between the SW Pacific weather regimes and global precipitation reanalysis fields indicate a strong connection between regional weather patterns and South Pacific convergence zone (SPCZ) mean position changes and relative intensity of convective loci within the SPCZ. Climate field correlations to SW Pacific weather regimes also show distinct geopotential height and SST signatures across Southern Hemisphere middle and high latitudes and the Indian Ocean basin. Strong statistical significance for portions of those spatial patterns lends support to the assertion of extra‐basin teleconnections for SW Pacific weather regimes. There are strong precipitation impacts from SW Pacific weather regime frequency changes and regime persistence on extreme rainfall deficits and/or surpluses for small islands during austral summer. Diagnostic analysis of the spatial correlation fields and each weather regime indicates these weather patterns are connected to eastern equatorial Pacific‐styles of El Niño and La Niña and Modoki La Niña. Another regime type appears to be connected to an enhancement of the Hadley–Ferrell circulation, while two other types are influenced by phenomena that arise outside the Pacific basin (Madden–Julian oscillation, Southern Annular Mode, and Pacific South American mode). SW Pacific weather regime investigations in the context of modern climate, palaeoclimatology, and future climate change scenarios can help to surmount spatial‐scale mismatches that exist between global models and small Pacific islands, while helping to improve general understanding of island‐scale impacts from atmospheric circulation.
  • Keywords:
  • Source:
    International Journal of Climatology, 38(4), 1893-1909
  • DOI:
  • ISSN:
    0899-8418;1097-0088;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1