Computationally efficient processing of in situ underwater digital holograms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Computationally efficient processing of in situ underwater digital holograms

Filetype[PDF-15.34 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Limnology and Oceanography: Methods
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Underwater digital in‐line holography can provide high‐resolution, in situ imagery of marine particles and offers many advantages over alternative measurement approaches. However, processing of holograms requires computationally expensive reconstruction and processing, and computational cost increases with the size of the imaging volume. In this work, a processing pipeline is developed to extract targets from holograms where target distribution is relatively sparse without reconstruction of the full hologram. This is motivated by the desire to efficiently extract quantitative estimates of plankton abundance from a data set (>300,000 holograms) collected in the Northwest Atlantic using a large‐volume holographic camera. First, holograms with detectable targets are selected using a transfer learning approach. This was critical as a subset of the holograms were impacted by optical turbulence, which obscured target detection. Then, target diffraction patterns are detected in the hologram. Finally, targets are reconstructed and focused using only a small region of the hologram around the detected diffraction pattern. A search algorithm is employed to select distances for reconstruction, reducing the number of reconstructions required for 1 mm focus precision from 1000 to 31. When compared with full reconstruction techniques, this method detects 99% of particles larger than 0.1 mm2, a size class which includes most copepods and larger particles of marine snow, and 85% of those targets are sufficiently focused for classification. This approach requires 1% of the processing time required to compute full reconstructions, making processing of long time‐series, large imaging volume holographic data sets feasible.
  • Keywords:
  • Source:
    Limnology and Oceanography: Methods, 19(7), 476-487
  • DOI:
  • ISSN:
    1541-5856;1541-5856;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1