Climate change and coastal wetland salinization: Physiological and ecological consequences for Arctic waterfowl
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Climate change and coastal wetland salinization: Physiological and ecological consequences for Arctic waterfowl

Filetype[PDF-6.87 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Functional Ecology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Coastal wetland salinization related to warming climate has the potential to impact ecological systems globally. In Alaska, the Yukon‐Kuskokwim Delta (YKD) supports large concentrations of breeding water birds and is an ecologically important area for conservation of migratory bird biodiversity. On the YKD, the majority of waterfowl nest in low elevation coastal tundra where storm surges drive saline water into terrestrial wetland habitats. Because newly hatched water birds lack functional salt glands to process saline water, salinization may negatively impact their growth and survival. We investigated potential demographic impacts of wetland salinization by conducting controlled physiological experiments to determine consequences of saline water exposure to spectacled Somateria fischeri and Steller's eider Polysticta stelleri ducklings, and analysed habitat suitability based on experimentally defined tolerance thresholds and sampled wetland salinity levels. We found physiological and behavioural pathologies in We found that the area of coastal tundra where wetland salinity exceeded 6 ppt varied considerably among years, suggesting that some portion of the breeding range is unsuitable for rearing ducklings in some years. However, we also found that most eiders in most years nested in areas with salinity at or exceeding the tolerance threshold for ducklings, suggesting that nesting eiders do not appear to avoid saline habitats. We suggest that localized fresh water refugia currently may allow resilience to salinization during the critical period. Understanding how species and habitats respond to climate driven changes is essential for predicting future patterns of distribution and abundance, and is necessary for making informed decisions about conservation priorities. Our study provides insights into the extent of wetland salinization in Alaska, mechanism of impact and current ecological consequences on avian communities depending on these habitats. With ongoing climate change, the probability of species crossing physiological tolerance thresholds of wetland salinity may change in the future. Read the free Plain Language Summary for this article on the Journal blog.
  • Keywords:
  • Source:
    Functional Ecology, 37(7), 1884-1896
  • DOI:
  • ISSN:
    0269-8463;1365-2435;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1