Hydroclimatology of the Mississippi River Basin
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates
...

to

...
Document Data
Library
People
Clear All
...
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Hydroclimatology of the Mississippi River Basin




Details:

  • Journal Title:
    JAWRA Journal of the American Water Resources Association
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Model estimated monthly water balance (WB) components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff [R]) for 848 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Mississippi River Basin (MRB) are used to examine the temporal and spatial variability of the MRB WB for water years 1901 through 2014. Results indicate the MRB can be divided into nine subregions with similar temporal variability in R. The WB analyses indicated ~79% of total water‐year MRB runoff is generated by four of the nine subregions and most of the R in the basin is derived from surplus (S) water during the months of December through May. Furthermore, the analyses showed temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the western U.S. and positive atmospheric pressure anomalies over the eastern U.S. coast. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the Gulf of Mexico into the MRB. In the context of paleo‐climate reconstructions of the Palmer Drought Severity Index, since about 1900 the MRB has experienced wetter conditions than were experienced during the previous 500 years.
  • Keywords:
  • Source:
    JAWRA Journal of the American Water Resources Association, 55(4), 1053-1064
  • DOI:
  • ISSN:
    1093-474X;1752-1688;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:
    Filetype[PDF-474.52 KB]

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1