Vertical distribution of larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus): Implications for vertical migratory behaviour and transport
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Vertical distribution of larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus): Implications for vertical migratory behaviour and transport

Filetype[PDF-197.69 KB]



Details:

  • Journal Title:
    Fisheries Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding the interactions among biological and physical processes is essential to determining how the environment affects transport and survival of fishes. We examined vertical distribution in larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus) using 126 depth stratified tows in Delaware Bay, USA, during two cruises, in December 2007 and February 2008. Menhaden larvae were 16.8–24.6 and 20.5–26.2 mm standard length in December and February. Corresponding lengths for croaker were 9.3–17.9 and 8.6–19.6 mm. Using empirical observations, and statistically derived models, we explored larval concentration for both species as a function of location, depth, diel period, tidal period, size, and pairwise interactions. Menhaden concentration was best modeled as a function of station, cruise, and interactions between depth and size as well as between station and cruise. No significant differences in larval menhaden concentration were present among tidal and diel periods. Croaker concentration was best modeled as a function of size and interactions between station and diel period, depth and size, cruise and size. Despite tidal period not emerging as a significant model parameter, we observed larger croaker larvae during nighttime flood tides. Our statistical models are consistent with processes of up‐estuary transport for both species, suggesting larvae are increasingly affected by behavioral responses as larvae grow, exhibiting stronger patterns in vertical distribution. The results refine our understanding of the potential importance of size‐related differences in vertical distribution for larval transport in these species. Future research should examine the interactions among size‐specific vertical migratory capabilities, vertical distribution, transport, and retention.
  • Keywords:
  • Source:
    Fisheries Oceanography, 27(3), 222-231
  • DOI:
  • ISSN:
    1054-6006;1365-2419;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1