Spatial connectivity in an adult‐sedentary reef fish with extended pelagic larval phase
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Spatial connectivity in an adult‐sedentary reef fish with extended pelagic larval phase

Filetype[PDF-4.12 MB]



Details:

  • Journal Title:
    Molecular Ecology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding the spatial scale of demographic connectivity in marine reef fishes dispersing pelagic larvae is a challenging task because of the technical difficulties associated with tagging and monitoring the movements of progeny at early life stages. Several studies highlighted a strong importance of local retention with levels of dispersal of ecological significance restricted to short distances. To date little information is available in species where pelagic dispersal lasts for long periods of time. In this work, population structure and connectivity were studied in the grey triggerfish, Balistes capriscus. Grey triggerfish larvae and juveniles remain associated with floating Sargassum sp. beds for an estimated period of 4–7 months before settling on benthic habitats where they remain sedentary as adults. Analysis of genetic variation among populations along the continental shelf of the northern Gulf of Mexico and U.S. east coast, encompassing over 3,100 km of coastline, revealed homogeneous allele frequencies and a weak isolation‐by‐distance pattern. Moment and maximum‐likelihood estimates of dispersal parameters both indicated occurrence of large neighbourhoods with estimates of the dispersal distribution parameter σ of 914 and 780 km, respectively. Simulated distributions of dispersal distances using several distribution functions all featured substantial fractions of long‐distance dispersal events with the 90% percentiles of travel distance prior to settlement averaging 1,809 km. These results suggest a high dependency of local recruitment on the output of nonlocal spawning stocks located hundreds of kilometres away and a reduced role of local retention in this species.
  • Keywords:
  • Source:
    Molecular Ecology, 26(19), 4955-4965
  • DOI:
  • ISSN:
    0962-1083;1365-294X;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1