Physiological acclimatization in high‐latitude zooplankton
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Physiological acclimatization in high‐latitude zooplankton

Filetype[PDF-1006.10 KB]



Details:

  • Journal Title:
    Molecular Ecology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    How individual organisms adapt to nonoptimal conditions through physiological acclimatization is central to predicting the consequences of unusual abiotic and biotic conditions such as those produced by marine heat waves. The Northeast Pacific, including the Gulf of Alaska, experienced an extreme warming event (2014–2016, “The Blob”) that affected all trophic levels and led to large‐scale changes in the community. The marine copepod Neocalanus flemingeri is a key member of the subarctic Pacific pelagic ecosystem. During the spring phytoplankton bloom this copepod builds substantial lipid stores as it prepares for its nonfeeding adult phase. A 3‐year comparison of gene expression profiles of copepods collected in Prince William Sound in the Gulf of Alaska between 2015 and 2017 included two high‐temperature years (2015 and 2016) and one year with very low phytoplankton abundances (2016). The largest differences in gene expression were between high and low chlorophyll years, and not between warm and cool years. The observed gene expression patterns were indicative of physiological acclimatization. The predominant signal in 2016 was the down‐regulation of genes involved in glycolysis and its incoming pathways, consistent with the modulation of metabolic rates in response to prolonged low food conditions. Despite the down‐regulation of genes involved in metabolism, there was no evidence of suppression of protein synthesis based on gene expression or behavioural activity. Genes involved in muscle function were up‐regulated, and the copepods were actively swimming and responsive to stimuli at collection. However, genes involved in fatty acid metabolism were down‐regulated in 2016, suggesting reduced lipid accumulation.
  • Keywords:
  • Source:
    Molecular Ecology, 31(6), 1753-1765
  • DOI:
  • ISSN:
    0962-1083;1365-294X;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1