The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Testing Stochastic and Perturbed Parameter Methods in an Experimental 1-km Warn-on-Forecast System Using NSSL’s Phased-Array Radar Observations
-
2024
-
-
Source: Monthly Weather Review, 152(2), 433-454
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:The success of the National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System (WoFS) to provide useful probabilistic guidance of severe and hazardous weather is mostly due to the frequent assimilation of observations, especially radar observations. Phased-array radar (PAR) technology, which is a potential candidate to replace the current U.S. operational radar network, would allow for even more rapid assimilation of radar observations by providing full-volumetric scans of the atmosphere every ∼1 min. Based on previous studies, more frequent PAR data assimilation can lead to improved forecasts, but it can also lead to ensemble underdispersion and suboptimal observation assimilation. The use of stochastic and perturbed parameter methods to increase ensemble spread is a potential solution to this problem. In this study, four stochastic and perturbed parameter methods are assessed using a 1-km-scale version of the WoFS and include the stochastic kinetic energy backscatter (SKEB) scheme, the physically based stochastic perturbation (PSP) scheme, a fixed perturbed parameters (FPP) method, and a novel surface-model scheme blending (SMSB) method. Using NSSL PAR observations from the 9 May 2016 tornado outbreak, experiments are conducted to assess the impact of the methods individually, in different combinations, and with different cycling intervals. The results from these experiments reveal the potential benefits of stochastic and perturbed parameter methods for future versions of the WoFS. Stochastic and perturbed parameter methods can lead to more skillful forecasts during periods of storm development. Moreover, a combination of multiple methods can result in more skillful forecasts than using a single method.
-
Keywords:
-
Source:Monthly Weather Review, 152(2), 433-454
-
DOI:
-
ISSN:0027-0644;1520-0493;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: