Climate change-informed dietary modeling in Pacific cod: Experimentally-derived effects of temperature and dietary quality on carbon and nitrogen stable isotope trophic discrimination factors
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Climate change-informed dietary modeling in Pacific cod: Experimentally-derived effects of temperature and dietary quality on carbon and nitrogen stable isotope trophic discrimination factors

Filetype[PDF-733.21 KB]



Details:

  • Journal Title:
    PLOS ONE
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Stable isotope analysis is a powerful tool for dietary modeling and trophic ecology research. A crucial piece of information for isotopic dietary modeling is the accurate estimation of trophic discrimination factors (TDFs), or the isotopic offset between a consumer’s tissue and its diet. In order to parameterize stable isotope dietary models for future climate scenarios, we investigated the effect of water temperature and dietary protein and lipid content on TDFs in juvenile Pacific cod (Gadus macrocephalus). Pacific cod are a commercially and ecologically important species, with stock numbers in the northeast Pacific recently having dropped by more than 70%. We tested four water temperatures (6, 8, 10, and 12°C) and two dietary regimens (low and high lipid content), representing a range of potential ocean temperature and prey quality scenarios, in order to determine carbon and nitrogen TDFs in juvenile Pacific cod. Additionally, we assessed dietary intake and proximate composition of the experimental fish in order to estimate consumption, assimilation, and retention of dietary nutrients. The results of this study suggest that dietary protein catabolism is a primary driver of nitrogen TDF variability in juvenile Pacific cod. Across all temperature treatments from 6 to 12°C, fish reared on the lower quality, lower lipid content diet had higher nitrogen TDFs. The mean TDFs for fish raised on the higher lipid, lower protein diet were +3.40 ‰ for nitrogen (Δ15N) and +0.36 ‰ for lipid-corrected carbon (Δ LC 13C). The mean TDFs for fish raised on the lower lipid, higher protein diet were +4.09 ‰ for nitrogen (Δ15N) and 0.00 ‰ for lipid-corrected carbon (Δ LC 13C). Lipid-corrected carbon isotope data showed that, regardless of temperature, fish consuming the lower lipid diet had essentially no trophic discrimination between diet and bulk tissues. We found no ecologically meaningful differences in TDFs due to water temperature across the 6°experimental range. The results of this experiment demonstrate that dietary quality, and more specifically the use of dietary protein for energetic needs, is a primary driver of trophic discrimination factors. The TDFs determined in this study can be applied to understanding trophic ecology in Pacific cod and closely related species under rapidly changing prey availability and ocean temperature conditions.
  • Keywords:
  • Source:
    PLOS ONE, 18(12), e0295564
  • DOI:
  • ISSN:
    1932-6203
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC0 Public Domain
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1