MAPR: PMEL’s Miniature Autonomous Plume Recorder
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

MAPR: PMEL’s Miniature Autonomous Plume Recorder

Filetype[PDF-689.19 KB]



Details:

  • Journal Title:
    Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The NOAA Vents program was established in 1983 at the Pacific Marine Environmental Laboratory (PMEL; Hammond et al., 2015), just six years after the discovery of hydrothermal vents and their unique chemosynthetic ecosystems (Corliss et al., 1979). Because seafloor hydrothermal venting contributes significantly to the transfer of heat and mass from the solid Earth to the ocean, the program’s mission was to systematically explore, discover, and characterize the environmental impacts of submarine volcanism and hydrothermal venting on ocean physical, chemical, and biological processes. The program initially focused on the mid-ocean spreading centers in PMEL’s “backyard” (i.e., the Gorda, Juan de Fuca, and Endeavour Ridges in the Northeast Pacific) where segment-scale surveys detected plumes in the water column above the ridge crest that led to the discovery of numerous individual vent fields (see Hammond et al., 2015, and references therein). New technologies and techniques were created and/or adapted to address the challenges of finding and studying these vents. Repeat visits to the Northeast Pacific sites documented spatial and temporal changes, stimulating the development of new hypotheses about their associated biogeochemical processes. However, testing how broadly applicable these hypotheses would be on a global scale required discovering new vent sites from a far wider range of geological settings, and global-scale exploration requires significant resources.
  • Keywords:
  • Source:
    Oceanography (2023)
  • Series:
  • DOI:
  • ISSN:
    1042-8275
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1