A review of recent research progress on the effect of external influences on tropical cyclone intensity change
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A review of recent research progress on the effect of external influences on tropical cyclone intensity change

Filetype[PDF-4.78 MB]



Details:

  • Journal Title:
    Tropical Cyclone Research and Review
  • Description:
    Over the past four years, significant research has advanced our understanding of how external factors influence tropical cyclone (TC) intensity changes. Research on air-sea interactions shows that increasing the moisture disequilibrium is a very effective way to increase surface heat fluxes and that ocean salinity-stratification plays a non-negligible part in TC intensity change. Vertical wind shear from the environment induces vortex misalignment, which controls the onset of significant TC intensification. Blocking due to upper-level outflow from TCs can reduce the magnitude of vertical wind shear, making for TC intensification. Enhanced TC-trough interactions are vital for rapid intensification in some TC cases because of strengthened warm air advection, but upper-level troughs are found to limit TC intensification in other cases due to dry midlevel air intrusions and increased shear. Aerosol effects on TCs can be divided into direct effects involving aerosol-radiation interactions and indirect effects involving aerosol-cloud interactions. The radiation absorption by the aerosols can change the temperature profile and affect outer rainbands through changes in stability and microphysics. Sea spray and sea salt aerosols are more important in the inner region, where the aerosols increase precipitation and latent heating, promoting more intensification. For landfalling TCs, the intensity decay is initially more sensitive to surface roughness than soil moisture, and the subsequent decay is mainly due to the rapid reduction in surface moisture fluxes. These new insights further sharpen our understanding of the mechanisms by which external factors influence TC intensity changes.
  • Source:
    Tropical Cyclone Research and Review 12 (2023) 200–215
  • Format:
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26