Triple Collocation of Ground-, Satellite- and Land Surface Model-Based Surface Soil Moisture Products in Oklahoma Part II: New Multi-Sensor Soil Moisture (MSSM) Product
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Triple Collocation of Ground-, Satellite- and Land Surface Model-Based Surface Soil Moisture Products in Oklahoma Part II: New Multi-Sensor Soil Moisture (MSSM) Product

Filetype[PDF-5.36 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Description:
    This study develops a triple-collocation (TC) based, multi-source shallow-soil moisture product for Oklahoma. The method uses a least squared weights (LSW) optimization to find the set of parameters that result in the lowest root mean squared error (RMSE) with respect to the “unknown truth”. Soil moisture information from multiple sources and resolutions, including the Soil Moisture Active Passive SMAP L3_SM_P_E (9 km, daily), the physically-based, land surface model (LSM) estimates from NLDAS_NOAH0125_H (1/8°, hourly), and the Oklahoma Mesonet ground sensor network (9 km interpolated from point, 30 min) is merged into a 9 km spatial and daily temporal resolution product across the state of Oklahoma from April 2015 to July 2019. This multi-sensor surface soil moisture (MSSM) product is assessed in terms of a state-wide benchmark and previously tested, in situ-based soil moisture product and SMAP L4. Results show that: (1) independent source products have differential values according to the regional conditions they represent, including land cover type, soils, irrigation, or climate regime; (2) beyond serving as validation sets, in situ measurements are of significant value for improving the accuracy of multi-sensor soil moisture datasets through TC; and (3) state-wide RMSE values obtained with MSSM are similar to the typical measurement error found on in situ ground measurements which provides some degree of confidence on the new product. MSSM is an improvement over currently available products in Oklahoma due to its minimized uncertainty, easiness of production, and continuous temporal and geographic coverage. Nevertheless, to exploit its utility, further tests of this methodology are needed in different climates, land cover types, geographic regions, and for other independent products and spatiotemporal resolutions.
  • Source:
    Remote Sensing. 2023; 15(13):3450
  • Format:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26