Accounting for snowpack and time-varying lags in statistical models of stream temperature
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Accounting for snowpack and time-varying lags in statistical models of stream temperature

Filetype[PDF-12.98 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrology X
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Water temperature plays a primary role in driving ecological processes in streams due to its direct impact on biogeochemical cycles and the physiological processes of stream fauna, such as growth, development, and the timing of life history events. Streams influenced by snowpack melt are generally cooler in the summer and demonstrate less sensitivity to climate variability in what is commonly referred to as “climate buffering”. Despite the substantial influence of snowpack on stream temperature and expected changes in snowpack accumulation and melt timing with climate change, methods for representing snowpack in statistical models for stream temperature have not been well explored. In this investigation, we quantified the extent of stream temperature buffering in free-flowing streams across a geographically diverse region in the Pacific Northwest USA. We demonstrated that statistical models of daily mean stream temperature can be improved by explicitly accounting for temporal variability in a small number of climate covariates believed to be mechanistically related to stream temperature. Our novel statistical approach included as predictors combinations and interactions between the following variables: (1) air temperature, (2) lagged air temperature (where the lag duration varied according to its relationship with flow on a given day at that site), (3) flow, (4) snowpack in the upstream catchment, and (5) day of year. We found that sites with substantial snow influence were associated with increased air temperature buffering during the warm season and longer air temperature lags (>30 days during spring high flows and ∼ 10 days during late summer low flows) compared to sites where precipitation predominantly fell as rain (<6 days year-round). By accounting for snowpack and temporal variation in lagged heat transfer processes, our models were able to accurately predict seasonal patterns and interannual variability in stream temperature in validation data from years not used in model fits using publicly available data sources (average RMPSE ∼ 0.80).
  • Keywords:
  • Source:
    Journal of Hydrology X, 17, 100136
  • DOI:
  • ISSN:
    2589-9155
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at staging-noaa.cdc.gov

Version 3.27.1