Retrofitting Urban Land Through Integrative, Subsoils-Based Planning Of Green Stormwater Infrastructure: A Research Framework
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Retrofitting Urban Land Through Integrative, Subsoils-Based Planning Of Green Stormwater Infrastructure: A Research Framework

Filetype[PDF-4.51 MB]



Details:

  • Journal Title:
    Environmental Research: Infrastructure and Sustainability
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    We present a research framework that integrates native subsoil performance and surface retrofitting into coordinated green stormwater infrastructure (GSI) planning. This framework provides communities a strategy to move beyond opportunistic GSI, which can be limited to capturing marginal amounts of stormwater, toward more impactful, coordinated GSI planning that restores the lost hydrologic functioning of the pre-development landscape. We create this framework by establishing critical performance-based relationships among four variables: (1) saturated hydraulic conductivity of native subsoils (∼upper 2 m below urban compaction and fill); (2) GSI design depth for both rain gardens and permeable pavement (in increments of 6″ from 12–30″ for planted and paved GSI); (3) loading ratio, defined as the ratio of GSI retrofit area to upstream impervious surface runoff area (from 1:2 to 1:5 for planted GSI; and 1:1 and direct infiltration for paved GSI); and (4) design storms (rainfall quantity up to 5-inches over 2 h and 24 h durations). We model the four variables using GSI models (built in the US Environmental Protection Agency’s Storm Water Management Model) and reliability analysis, a risk-assessment method adapted to characterize the reliability of GSI in response to varying stormwater runoff loading. The outcome of the modeling is a set of fragility curves and design prototypes, adjustable to catchment and sub-catchment scales, to assist municipalities in early funding and investment decisions to retrofit urbanized land through GSI. We also share two piloted applications in which we use the research framework within the Chicago-Calumet region in Illinois, USA, to conduct site-specific subsoil sampling and determinations of saturated hydraulic conductivity and to develop urban-scale GSI retrofit scenarios. Our framework is transferable to other urban regions, and particularly useful where a lack of integrating native subsoil performance into GSI design hinders decision-making, coordinated GSI planning at scale, and achieving high runoff reduction targets.
  • Keywords:
  • Source:
    Environmental Research: Infrastructure and Sustainability, 1(3), 035003
  • DOI:
  • ISSN:
    2634-4505
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1