Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus

Filetype[PDF-838.86 KB]



Details:

  • Journal Title:
    Limnology and Oceanography
  • Sea Grant Program:
  • Description:
    Anthropogenic CO2‐emission is causing ocean warming and acidification. Understanding how basic physiological processes of marine organisms respond to these stressors is important for predicting their responses to future global change. We examined the effects of elevated pCO2 and temperature (pCO2 = 344–2199 ppm; temperature = 6°C, 9°C, and 12°C) on the calcification rate, extrapallial fluid (EPF) carbonate chemistry, respiration, and survivorship of Atlantic sea scallops (Placopecten magellanicus) in a fully crossed 143‐d experiment. Rates of calcification and respiration were inhibited by elevated pCO2, and mortality occurred when elevated pCO2 was accompanied by high‐temperature stress. Declines in growth and survivorship were likely caused by external shell dissolution, thermal stress, and hypercapnic reduction of metabolism under elevated pCO2. Concentrations of dissolved inorganic carbon (DIC) and total alkalinity in the EPF increased above seawater concentrations in response to elevated pCO2. EPF pH declined, but did not decline as much as seawater pH, indicating that scallops regulate EPF pH to support calcification. The combination of EPF pH regulation and DIC elevation yielded an increase in EPF [] under elevated pCO2 treatments. The combination of low respiration rates, high EPF [], and low calcification rates under elevated pCO2 suggests that the impaired calcification arises more from hypercapnic inhibition of metabolic activity and external shell dissolution than from chemically unfavorable conditions in the EPF. These results demonstrate the importance of EPF chemistry for bivalve biomineralization, but show that regulation efforts are insufficient to fully offset the deleterious effects of elevated pCO2 on scallop performance.
  • Source:
    Limnology and Oceanography, 67(8), 1670-1686
  • ISSN:
    0024-3590;1939-5590;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26