Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus

Filetype[PDF-838.86 KB]



Details:

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • Sea Grant Program:
  • Description:
    Anthropogenic CO2‐emission is causing ocean warming and acidification. Understanding how basic physiological processes of marine organisms respond to these stressors is important for predicting their responses to future global change. We examined the effects of elevated pCO2 and temperature (pCO2 = 344–2199 ppm; temperature = 6°C, 9°C, and 12°C) on the calcification rate, extrapallial fluid (EPF) carbonate chemistry, respiration, and survivorship of Atlantic sea scallops (Placopecten magellanicus) in a fully crossed 143‐d experiment. Rates of calcification and respiration were inhibited by elevated pCO2, and mortality occurred when elevated pCO2 was accompanied by high‐temperature stress. Declines in growth and survivorship were likely caused by external shell dissolution, thermal stress, and hypercapnic reduction of metabolism under elevated pCO2. Concentrations of dissolved inorganic carbon (DIC) and total alkalinity in the EPF increased above seawater concentrations in response to elevated pCO2. EPF pH declined, but did not decline as much as seawater pH, indicating that scallops regulate EPF pH to support calcification. The combination of EPF pH regulation and DIC elevation yielded an increase in EPF [] under elevated pCO2 treatments. The combination of low respiration rates, high EPF [], and low calcification rates under elevated pCO2 suggests that the impaired calcification arises more from hypercapnic inhibition of metabolic activity and external shell dissolution than from chemically unfavorable conditions in the EPF. These results demonstrate the importance of EPF chemistry for bivalve biomineralization, but show that regulation efforts are insufficient to fully offset the deleterious effects of elevated pCO2 on scallop performance.
  • Keywords:
  • Source:
    Limnology and Oceanography, 67(8), 1670-1686
  • DOI:
  • ISSN:
    0024-3590;1939-5590;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1