Effects of marine reserves on predator-prey interactions in central California kelp forests
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Effects of marine reserves on predator-prey interactions in central California kelp forests

Filetype[PDF-3.07 MB]



Details:

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Marine reserves are often designed to increase density, biomass, size structure, and biodiversity by prohibiting extractive activities. However, the recovery of predators following the establishment of marine reserves and the consequent cessation of fishing may have indirect negative effects on prey populations by increasing prey mortality. We coupled field surveys with empirical predation assays (i.e. tethering experiments) inside and outside of 3 no-take marine reserves in kelp forests along the central California coast to quantify the strength of interactions between predatory fishes and their crustacean prey. Results indicated elevated densities and biomass of invertebrate predators inside marine reserves compared to nearby fished sites, but no significant differences in prey densities. The increased abundance of predators inside marine reserves translated to a significant increase in mortality of 2 species of decapod crustaceans, the dock shrimpPandalus danaeand the cryptic kelp crabPugettia richii, in tethering experiments. Shrimp mortality rates were 4.6 times greater, while crab mortality rates were 7 times greater inside reserves. For both prey species, the time to 50% mortality was negatively associated with the density and biomass of invertebrate predators (i.e. higher mortality rates where predators were more abundant). Video analyses indicated that macro-invertivore fishes arrived 2 times faster to tethering arrays at sites inside marine reserves and began attacking tethered prey more rapidly. The results indicate that marine reserves can have direct and indirect effects on predators and their prey, respectively, and highlight the importance of considering species interactions in making management decisions.
  • Keywords:
  • Source:
    Marine Ecology Progress Series, 655, 139-155
  • DOI:
  • ISSN:
    0171-8630;1616-1599;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1