An Hourly Climatology of Operational MRMS MESH-Diagnosed Severe and Significant Hail with Comparisons to Storm Data Hail Reports
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

An Hourly Climatology of Operational MRMS MESH-Diagnosed Severe and Significant Hail with Comparisons to Storm Data Hail Reports

Filetype[PDF-3.88 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Multi-Radar Multi-Sensor (MRMS) system generates an operational suite of derived products in the National Weather Service useful for real-time monitoring of severe convective weather. One such product generated by MRMS is the maximum estimated size of hail (MESH) that estimates hail size based on the radar reflectivity properties of a storm above the environmental 0°C level. The MRMS MESH product is commonly used across the National Weather Service (NWS), including the Storm Prediction Center (SPC), to diagnose the expected hail size in thunderstorms. Previous work has explored the relationship between the MRMS MESH product and severe hail (≥25.4 mm or 1 in.) reported at the ground. This work provides an hourly climatology of severe MRMS MESH across the contiguous United States from 2012 to 2019, including an analysis of how the MESH climatology differs from the severe hail reports climatology. Results suggest that the MESH can provide beneficial hail risk information in areas where population density is low. Evidence also shows that the MESH can provide potentially beneficial information about severe hail occurrence during the night in locations that are climatologically favored for upscale convective growth and elevated convection. These findings have important implications for the use of MESH as a verification dataset for SPC probabilistic hail forecasts as well as severe weather watch decisions in areas of higher hail risk but low population density.
  • Keywords:
  • Source:
    Weather and Forecasting, 36(2), 645-659
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1