i
Global Distributions of Tropospheric and Stratospheric Gravity Wave Momentum Fluxes Resolved by the 9-km ECMWF Experiments
-
2022
-
-
Source: Journal of the Atmospheric Sciences, 79(10), 2621-2644
Details:
-
Journal Title:Journal of the Atmospheric Sciences
-
Personal Author:
-
NOAA Program & Office:
-
Description:Based on 20-day control forecasts by the 9-km Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF) for selected periods of summer and winter events, this study investigates global distributions of gravity wave momentum fluxes resolved by the highest-resolution-ever global operational numerical weather prediction model. Two supplementary datasets, including 18-km ECMWF IFS experiments and the 30-km ERA5, are included for comparison. In the stratosphere, there is a clear dominance of westward momentum fluxes over the winter extratropics with strong baroclinic instability, while eastward momentum fluxes are found in the summer tropics. However, meridional momentum fluxes, locally as important as the above zonal counterpart, show different behaviors of global distribution characteristics, with northward and southward momentum fluxes alternating with each other especially at lower altitudes. Both events illustrate conclusive evidence that stronger stratospheric fluxes are found in the ECMWF forecast with finer resolution, and that ERA5 datasets have the weakest signals in general, regardless of whether regridding is applied. In the troposphere, probability distributions of vertical motion perturbations are highly asymmetric with more strong positive signals especially over latitudes covering heavy rainfall, likely caused by convective forcing. With the aid of precipitation accumulation, a simple filtering method is proposed in an attempt to eliminate those tropospheric asymmetries by convective forcing, before calculating tropospheric wave-induced fluxes. Furthermore, this research demonstrates promising findings that the proposed filtering method could help in reducing the potential uncertainties with respect to estimating tropospheric wave-induced fluxes. Finally, absolute momentum flux distributions with proposed approaches are presented, for further assessment in the future.
-
Keywords:
-
Source:Journal of the Atmospheric Sciences, 79(10), 2621-2644
-
DOI:
-
ISSN:0022-4928;1520-0469;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: