Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat

Filetype[PDF-1.10 MB]



Details:

  • Journal Title:
    ICES Journal of Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Several approaches have been developed over the last decade to simultaneously estimate distribution or density for multiple species (e.g. “joint species distribution” or “multispecies occupancy” models). However, there has been little research comparing estimates of abundance trends or distribution shifts from these multispecies models with similar single-species estimates. We seek to determine whether a model including correlations among species (and particularly species that may affect habitat quality, termed “biogenic habitat”) improves predictive performance or decreases standard errors for estimates of total biomass and distribution shift relative to similar single-species models. To accomplish this objective, we apply a vector-autoregressive spatio-temporal (VAST) model that simultaneously estimates spatio-temporal variation in density for multiple species, and present an application of this model using data for eight US Pacific Coast rockfishes (Sebastes spp.), thornyheads (Sebastolobus spp.), and structure-forming invertebrates (SFIs). We identified three fish groups having similar spatial distribution (northern Sebastes, coastwide Sebastes, and Sebastolobus species), and estimated differences among groups in their association with SFI. The multispecies model was more parsimonious and had better predictive performance than fitting a single-species model to each taxon individually, and estimated fine-scale variation in density even for species with relatively few encounters (which the single-species model was unable to do). However, the single-species models showed similar abundance trends and distribution shifts to those of the multispecies model, with slightly smaller standard errors. Therefore, we conclude that spatial variation in density (and annual variation in these patterns) is correlated among fishes and SFI, with congeneric fishes more correlated than species from different genera. However, explicitly modelling correlations among fishes and biogenic habitat does not seem to improve precision for estimates of abundance trends or distribution shifts for these fishes.
  • Keywords:
  • Source:
    ICES Journal of Marine Science, 74(5), 1311-1321
  • DOI:
  • ISSN:
    1054-3139;1095-9289;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC0 Public Domain
  • Rights Statement:
    This work is written by US Government employees and is in the public domain in the US.
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1