The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
WSR-88D Tornado Intensity Estimates. Part II: Real-Time Applications to Tornado Warning Time Scales
-
2020
-
-
Source: Weather and Forecasting, 35(6), 2493-2506
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:A sample of damage-surveyed tornadoes in the contiguous United States (2009–17), containing specific wind speed estimates from damage indicators (DIs) within the Damage Assessment Toolkit dataset, were linked to radar-observed circulations using the nearest WSR-88D data in Part I of this work. The maximum wind speed associated with the highest-rated DI for each radar scan, corresponding 0.5° tilt angle rotational velocity Vrot, significant tornado parameter (STP), and National Weather Service (NWS) convective impact-based warning (IBW) type, are analyzed herein for the sample of cases in Part I and an independent case sample from parts of 2019–20. As Vrot and STP both increase, peak DI-estimated wind speeds and IBW warning type also tend to increase. Different combinations of Vrot, STP, and population density—related to ranges of peak DI wind speed—exhibited a strong ability to discriminate across the tornado damage intensity spectrum. Furthermore, longer duration of high Vrot (i.e., ≥70 kt) in significant tornado environments (i.e., STP ≥ 6) corresponds to increasing chances that DIs will reveal the occurrence of an intense tornado (i.e., EF3+). These findings were corroborated via the independent sample from parts of 2019–20, and can be applied in a real-time operational setting to assist in determining a potential range of wind speeds. This work provides evidence-based support for creating an objective and consistent, real-time framework for assessing and differentiating tornadoes across the tornado intensity spectrum.
-
Keywords:
-
Source:Weather and Forecasting, 35(6), 2493-2506
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: