The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Clouds Increasingly Influence Arctic Sea Surface Temperatures as CO2 Rises
-
2023
-
-
Source: Geophysical Research Letters, 50(8)
Details:
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:As Arctic sea ice retreats during the melt season, the upper ocean warms in response to atmospheric heat fluxes. Overall, clouds reduce these fluxes in summer, but how the radiative impacts of clouds on ocean warming could change as sea ice declines has not been documented. In global climate model simulations with variable CO2, the timing of sea ice retreat strongly influences the amplitude of cloud-induced summer cooling at the ocean surface. Under pre-industrial CO2 concentrations, summer clouds have little direct effect on maximum annual sea surface temperatures (SST). When CO2 concentrations increase, sea ice retreats earlier, allowing more solar radiation to warm the ocean. Clouds can counteract this summer warming by
-
Keywords:
-
Source:Geophysical Research Letters, 50(8)
-
DOI:
-
ISSN:0094-8276;1944-8007;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: