A Climatology of Easterly Wind Lake-Effect and Lake-Enhanced Precipitation Events over the Western Lake Superior Region
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Climatology of Easterly Wind Lake-Effect and Lake-Enhanced Precipitation Events over the Western Lake Superior Region

Filetype[PDF-4.97 MB]



Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Lake-effect precipitation is convective precipitation produced by relatively cold air passing over large and relatively warm bodies of water. This phenomenon most often occurs in North America over the southern and eastern shores of the Great Lakes, where high annual snowfalls and high-impact snowstorms frequently occur under prevailing west and northwest flow. Locally higher snow or rainfall amounts also occur as a result of lake-enhanced synoptic precipitation when conditionally unstable or neutrally stratified air is present in the lower troposphere. Although likely less common, lake-effect and lake-enhanced precipitation can also occur with easterly winds, impacting the western shores of the Great Lakes. This study describes a 15-yr climatology of easterly lake-effect (ELEfP) and lake-enhanced (ELEnP) precipitation [conjointly, easterly lake collective precipitation (ELCP)] events that developed in east-to-east-northeasterly flow over western Lake Superior from 2003 to 2018. ELCP occurs infrequently but often enough to have a notable climatological impact over western Lake Superior, with an average of 14.6 events per year. The morphology favors both single shore-parallel ELEfP bands due to the convex western shoreline of Lake Superior and mixed-type banding due to ELEnP events occurring in association with “overrunning” synoptic-scale precipitation. ELEfP often occurs in association with a surface anticyclone to the north of Lake Superior. ELEnP typically features a similar northerly displaced anticyclone and a surface cyclone located over the upper Midwest that favor easterly boundary layer winds over western Lake Superior.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 62(4), 529-545
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1